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ABSTRACT p

\1An inspection sampling problem discussed by(Deming k1962) (see-a4

Jurian L yeE9Op3 3, is analyzed assuming the percent

defective, p ,is partially unknown with prior vr(-) . In this case,

the aZZ or none inspection rule discussed by Deming may not be correct.

Simple conditions based on the lot size, the ratio of costs, anid the
L posterior mean determine when 100% inspection is best. Efficient

algorithms based on the posterior mean are given for determining the

optimal inspection plan in geea.- (q-
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A CRITIQUE OF DEMING'S DISCUSSION OF ACCEPTANCE SAMPLING PROCEDURES

by

Richard E. Barlow and Xiang Zhang

1. INTRODUCTION

The basic thesis of this paper is that W. Edwards Deming is, at heart,

a Bayesian. His interest in information and how to use it, together with

his emphasis on solving real problems by minimizing expected costs, more

* than supports this thesis.

Deming (1982) Chapter 13, considers the following production situation.

Periodically, lots of size N of similar units arrive and are put into

assemblies in a production line. The decision problem is vhether or not to

inspect units before they are put into assemblies. If we opt for inspection,

what sample size, n , of the lot size, N , should be inspected? Given x

observed defectives in a sample of size n ,the only decisions which will be

considered are: d (x,n) - install the remaining N - n without inspection
0

or d 1(x,n) - inspect all of the remaining N - n before installation.

Let p be the percent defective over many lots obtained from the same

vendor. Suppose we believe that the vendor's production of units is in

statistical control. Let ir(p) be our probability assessment for this

parameter p based on previous experience. ir(p) could be degenerate at,

say p In any event, haphazard sampling to check on the proportion de-

fective in particular lots is prudent to update information on p

Systematic lot sampling plans in Dodge-Romig (1929) and also implemented

in Military Standard 105D (1963) are described in every textbook on quality

control (e.g., Grant and Leavenworth (1974)). These have had the approval

* * ~ ~A ~ A~ A'...~N A~~A*A *. *V
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of some government agencies and are widely used. Deming (1982) argues that

these sampling plans tend to maximize expected costs and should not be used.

The objective of these sampling plans is to provide a procedure whereby a

decision as to whether or not to reject the lot can be made automatically.

If the lot is rejected, it could be sent back to the vendor or it could be

subjected to 100% inspection with defective units replaced by good units.

Deming (1982) argues that the vendor should supply quality records to the

manufacturer and that they should work together on the quality problem as

opposed to simply sending bad lots back to the vendor. If lots determined

to be bad, based on a sample, are to be subjected to 100% inspection and

*bad units replaced by good units at vendor's expense, what should the sample

size, n , be? Deming argues that, given prior information on p , the

"" minimum cost choice for n is either all or none; i.e., n - N or n 0 0

This choice is determined by the cost of sampling, the cost of replacing a

defective unit in the assembly by a good unit and n(p) . We will determine

conditions when this is correct and conditions when it is not.

(Deming (1982) points out on page 270 that there may be conditions under

which the all or none rule is not optimal but he does not furnish explicit

conditions.) Figure 1 describes our production setup.

Juran and Gryna (1980, section 17.2) consider the same problem

. when p is known and they credit the solution to Martin (1964).

The mathematics of sampling inspection plans are discussed by Hald

(1981). However, we follow the notation and mathematical development of

Deming (1982). Let k1 be the expected cost to inspect one unit at the start.

Let k2 be the cost of a defective unit that gets into the production-line.

This cost will include the cost to tear down the assembly at the point where

the defect is discovered. In some instances, we must replace the unit and

" retest the assembly. Let Z be 1 if the i-th unit is defective and 0

I' o- . . - . . .* * °
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otherwise. Let CI(Zi) be the cost of inspecting unit i . If a unit

is inspected and found defective, additional units from another lot are

inspected until a good unit is found. (We make this model assumption since

I all defective units which are found will be replaced at vendor's expense.)

Hence, conditional on p , the expected cost of inspecting unit i and,

if the unit is bad, inspecting until a good unit is found is

E[CI(Zi) P] - k [l + p/q]

where qil- p L

Let CR(Z ) be the cost of replacing unit i , if required, when it

is not inspected. Conditional on p , the expected cost of replacing unit

i in the assembly is

E[CR(Zi) I p] - p[k 2 + kI/q] •

Note that, since the replacement must be good, there is again an inspec-

tion cost incurred to find a good unit.

The usual sampling plan depends on n and a critical number c

If the observed number of defectives in the sample is less than or equal

to c , the lot is accepted and otherwise rejected. If the lot is accepted,

* no further inspection is made. If the lot is rejected, the remaining

N - n are inspected. Let P(rej I n,c,p) be the prior conditional probabil-

S ity that, under this inspection plan, all N units will be inspected. Let

P(acc I n,c,p) - 1 - P(rej I n,c,p) be the corresponding prior conditional

probability that the remaining N - n will not be inspected.

Given p ,the expected cost of inspection of a lot of N incoming

parts will be

[n 1 -
E I CI(Z + P(rej I n,c,p)E CI(z

"," ILt=n+l P
i- k

=kl[n + (N - n)P(reJ I n,c,p)](l + p/q).
1.

..................................................................... -
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Given p *the expected cost from the defective units that get into

the production line will be

N: -N
P(acc n,c,p)Enl JRZ P

(N -n)P(acc n,c,p)p[k 2 + k 1/q]

*where P(acc In,c,p) -1 -P(rej In,c,p) .Let r -n/N and note that

the total expected cost, given p ,is

k N{[r + (1U r)P(rej In,c,p)J(1 + p/q)

+ (1 -r)P(acc In,c,p)[pk /k1 + p/q]1
2 1

Substituting P(rej In,c,p) 1 - P(acc In,c,p) we have

k Njl + p/q + (1 -r)[-P(acc In,c,p)(l + p/q)

+ P(acc In,cp)(pk 2/k 1 + p/q)]}

k kN{l + p/q + (1 - r)P(acc In,c,p)(pk /k1  ) 11

*Since P(acc In'c'p) > 0 ,we see that the conditional total expected

cost is minimized for r -0 or n -0 given p ,when

(pk /k -1) < 0 or p < k/k

% and for r 1 or n-N when

(pk 2/k 1 -1) > 0 or p 2_ /

If our prior density 7r(p) -0 for p > k /k2  i.e., we feel certain

4*that p <k /k2  then n -0 is optimal.

\* * * * *~ *1 2. . : ~ . . . . . . . . . . . . . * * .
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If, on the other hand, our prior density r(p) - 0 for p < /k

i.e., we feel certain that p > kI/k 2  then n - N is optimal.

These results are recorded in Deming (1982) with no mention of a

"" possible prior density 7r(p) . For this reason, the case when w(p)

contains k1/k2  in an interval of its support was not considered. As we

shall see, the all or none results are not necessarily valid in this case.

• ... .

r

................................................................ °,
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2. CONDITIONS WHEN 0 < n < N

The solution to a similar problem, when p is partially unknown with

prior ir(p) , was discussed by Hald (1960). However, he considered a hyper-

geometric rather than binomal model. His solutions are more complicated.

The purpose of sampling is to gain information about p . If we think

we know p or if we think either p < k1/k 2 or p > k1 /k2  (but of course,

not both), then Deming is right - we should not sample. However, if we are

sufficiently uncertain about p , then our minimum expected cost strategy may

be to sample. The following results establish when 0 < n < N and suggest an

algorithm for determining the optimal (nc) inspection policy. The Beta(A,B)

A-1 B-idensity, ir(p) -4 p (1 - p) is often used in practice. However, our

results are valid for an arbitrary prior, 7(p)

Theorem 1:

If 7(p j n,x) is the posterior density for p given x defectives

in a sample of size n ,then n N is optimal if and only if

fp N(p N 1 x - O)dp > k1 /k2  (2.1)

0

For the Beta(A,B) prior this means n N if and only if

A/(A + B + N - 1) > k/k 2

Theorem 2:

If (2.1) does not hold, then the optimal n > n o where

no max [O,n .

and n is the smallest value of n such that

p (p n , x - O)dp < k1 /k2 . (2.2)

0

-. -- .. . . . . . . . . . . . . . . . . . . . . . . .
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For the Beta(A,B) density

no ma 10,[(k/k )A -A-B]). .

-2 1

-. Theorem 3:

For n such that n < n < N ,the optimum value of c is the largest

* value of c such that

J Pwr(p Inc)dp k < /
0

For the Beta(A,B) density, the solution c(n) is

c(n) -min {n,[(k /k )(n + A + B) -A])

Theorem 4:

The policy (n,c(n) -n) and 0 < n < N is never the only optimal solution.

It follows from Theorems 1 and 2 that if

Jp7t(p)dp > k /k2
0

and

1

Jpir(p IN -1 ,x - )dp <k/

0

then the optimal n is neither 0 nor N

These results suggest the following algorithm. If k, k then

n -0 is optimal. If
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1

Spir(p N - 1 , x O)dp > kl/k

0

then n - N ,else compute n from Theorem 2. For each n > n ,find00 0

the optimal c(n) using Theorem 3 and record the expected cost. Select

that (n,c(n)) policy having minimum expected cost. Another algorithm

will be given in the Appendix.

If we stop inspection, we can clearly gain no further information

about p and hence there would be no reason to resume inspection once

stopped. However, if there is a feedback loop from assembly tests, then

we may update our last posterior density for p and determine an optimal

inspection policy for remainders.

4

.:.,

).

"-'.-'-.;', .... '. . ..' .',.T ', L , % % ,% %' . .%' , -; - ',- ',,", , ,, '- - '-" ,-.'' ."...•.. . .- , t-,-,., -,' ',", . ,



10

3. PROOFS OF THEOREMS

Our decision problem can be described by a decision tree as in aa

Figure 2.

CSTO

DECISION TREE FOR INSPECTION PROBLEM

FIGURE 2

We will need the following 1cm based on Figure 2.

Lemma 1.

Given (x,n) and restricting decisions to d 0(x~n) and d (xn)

d (x,n) is best if

Iy~ n,x)dp <k/
CC 0

and d (x,n) otherwise.

CV.



Proof:

The expected cost given (xn) if we take decision d (x,n) is
/0

C(dO ) - E [(N - n)p(k2 + k1 /q) I n,x]a (T

- (N n)E() [p(k 2 + k1 /q) I n,x] .

If decision d (xn) is taken

C(d1 ) - (N n)E [k (U + p/q) n,x]

Hence d (xn) is optimal if C(do) < C(d ) or
0 0.

pir(p n,x)dp < k /k2  Q.E.D.

0

By the principle of maximizing expected utility (or minimizing expected

cost in this case) if n are sampled and x are found defective, then we

should STOP inspection if

p(pI nx)dp <k /k

0

and inspect the remaining N - n otherwise in order to minimize our expected

cost given n and x . This principle and the monotone likelihood ratio

property, true for the binomial likelihood, are all that are needed to prove

our theorems. Clearly, many similar theorems can be proved for other prob-

- ability models which also have the monotone likelihood ratio property. In

the binomial case, the likelihood -

0-A

# t. F
.5. _

K 0 * . * 0 0 0 ~ *~....
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xn-x
L (p In, x) -p X( 1 -P)

has the property that if P1 < P2  then small values of x support p1

*while large values of x support p2 in the likelihood ratio sense;

i.e.,

>~ 1 I ~2 (3.1)
L (P2  n,x 1  L L(P2 j n,x 2

if x1<x The inequality is reversed if x is fixed, ni n)

replaces n in the left (right) ratio and n1 < n2

The following lemma is well known and is similar to Lemma 1 in

* Karlin and Rubin (1956a).

* Lemma 2:

Let Tr(p) be a prior for p .Let (x,n) be data and suppose that

* for

L(p1  n,x)IL (P2 In,x)

is + in x and t inn. Let g(p) be t in p. Then

1

f g (p) r(p nx)d
0

is t in x (n fixed) and +in n (x fixed).

Proof of Theorem 1:

Suppose we inspect N -1 units and observe x -0 defectives.

Given this information, our optimal decision is to inspect the remaining

unit by (2.1) and lemma 1. By (2.1) and lemma 2
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p7r(p nx)dp > k /k

Hence, if (2.1) is true, then any inspection policy which is optimal after

sampling will result in complete inspection. It follows under (2.1) that

n - N is optimal. Conversely, if n - N is optimal, then (2.1) must

be true. Q.E.D.

Proof of Theorem 2:

By Theorem 1, if (2.1) does not hold then n = N is not optimal.

Suppose n is optimal but does not satisfy (2.1) or (2.2). Then

f p71(p I n , x = O)dp > k1A•1 2

0

which by lema 2 implies

fpw(p i n,x)dp > k1/k2
0

for all x ,0 < x < n . This implies n = N was optimal after all

which is a contradiction. Hence n > n as claimed. Q.E.D.

Proof of Theorem 3:

After inspecting n units, consider the best of the two decisions:

d : STOP further inspection
0

" d1 : INSPECT the remaining N - n

-... ]
.,.. ..... . .. :!%~~%V
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Given n inspections and x observed defectives, do  is best if

pT(p J n,x)dp < k /

0

and d otherwise. Hence the optimal c(n) is the value stated, again
1

by the leumma. Q.E.D.

Proof of Theorem 4:

By (1.1), we need only calculate

(1- n/N)E ( P(acc n,c,p)Ip-- 1 (3.2)

to determine the best policy.

For (n,c(n)) , P(acc I n,n,p) = 1 so that (3.2) becomes

k I 
* (1 - n/N)E )p _ l (3.3)

If (nc(n) - n) were better than n - N , then

(- 1 < 0 . (3.4)

But in this case, n - 0 would be even better. Hence either n - 0 or

n - N is better or just as good as (n,c(n) = n) . Q.E.D.

V.N*.

-... .. '..-**. *
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.. 4. COMMENTS

In his book, Deming (1982) says, "Inspection of incoming materials

is an economic problem, and should be so treated. None of the standard

acceptance plans, so popular in courses and textbooks, minimizes the total

cost ... Put another way, they minimize the wrong cost." More generally, V.
Deming should have said that optimal decision rules can only be obtained

by maximizing expected utility. In the special case when our utility for

money is approximately linear in money, this can be done by minimizing our

expected cost (calculated using a density measuring our uncertainty about

unknown but relevant quantities). Our utility function need not be ex-

clusively based on money, but it must be coherently assessed. For an

excellent account of why this approach makes sense, read Lindley,

Making Decisions (1971).

The simple decision problem considered here is a special case of two

decision problems considered more generally in Karlin (1956b) but from a

non-Bayesian point of view.

6=

*.' .**..*....C*~ *. ** .*,~, *.....,r* . * . . .
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APPENDIX

We present here an alternative algorithm for computing the optimal

n and c . This algorithm, justifiable from the theorems stated in our

paper, differs from the previous one in that, instead of finding the optimal

c(n) for each n and then comparing all the pairs (n,c(n)) for

n - 0,1,2, ... , N , to get the one with minimum expected cost, it uses

the same Theorem 3 in reverse to get the set of n , S(c) - {n : nl(c) <

n < n2 (c)1 for each c ,such that c(n) in Theorem 3 equals c for all

n in the set. It then finds the locally optimal (n(c),c) within S(c)

first, and then compares all the pairs (n(c),c) for c running over its

range of interest to obtain the optimal (n,c) plan.

In general, both algorithms have the same computational complexity.

But for certain prior distributions, the Beta distribution for instance,

the value of the objective function is unimodal in n belonging to the

- set S(c) . So, in this case, we can use a binary search (instead of a

linear search) for (n(c),c) , and greatly reduce the computational effort.

The algorithm goes like this:

Step 0: If k /k >1 , then n -0 is optimal. Stop. Or else, if
1 2-

fp7r(p I N 1 x O)dp > k /k
f1 0

(for a Beta(A,B) prior, this inequality becomes A/(A + B +

N - 1) > kl/k2 ) then n - N is optimal. Stop. Or else,

compute the range of c , 0 < c < c , where c0  is the

largest c such that c < N and
0-

. . . .LIP % .. . .*...... .. ..... . ......
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f pTr(p N, x- co)dp < k/k 2 .

0

For Beta(A,B) c= min{N,[(kl/k2 )(A + B + N) - A])

Set c - 0. Go to Step 1.

Step 1: Find S(c) = {n nl(c) < n < n2 (c)} , where n (c) is

the smallest n such that n > c and

1

f PI(P I n,c)dp < /k
0

n2 (c) is the smallest n such that n > c and

P(PI n + l,c + dp /k2

0

For Beta(A,B)

nl(c) - max {c,[(k 2 /k )(c + A) - A - B]} ;

n2 (c) - max {c,[(k 2/k1 )(c + A) - A - B + k2/k] - 1}

Go to Step 2.

Step 2: In S(c) , find n(c) such that (n(c),c) yields the local

minimum in the objective function; record n(c) , c , and

the local optimal value LOCopt(c)

c c + 1 . If c <c , go to Step 1. Or else, go to Step 3.

Step 3: Compare LOCopt(c) for c - 0,1, ... , c to obtain the
• " 0

" (global) optimal (n,c) plan. Stop.

For the Beta prior, because of a binary search in Step 2, the total

number of comparisons is, in the worst case,

, . • .- .•- . . .-. . - . .- *... .. .... . * .... , .. .-., .. --.-.. .. .. ..-..... ... -..- .-. - . -°i % ".,o % ", °. , ° " % , ',° '-" . '-".. ". 9
- +

- . . ." - " . . ' - . ' - ' -_ . .- -. . .
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( log2 (k2 /k1)
k2 /k1  * N

For a numerical result, we use the data from the practical example

on pp. 279-280, Chapter 13, Deming (1982).

Lot size N - 2800 ; inspection cost kI - $.07 ; tear-down cost

-3k 2  $15 so that k/k 4.66 x 10- 3  p has a prior Beta(A,B)

such that E(p) = A/(A + B) .01 , which is the value for p in

Deming' s example.

A- .1 , B - 9.9 Vat (p)- 0.03

Inspection of Expected cost
incoming rods per lot

None $422

100% $198

(146,0) $ 77

A -l , B 99 /Vait(p) 0.01

Inspection of Expected cost
incoming rods per lot

None $422

100% $198

(630,2) $174

A- 10, B- 990 vVar(p) 0.003

Inspection of Expected cost
incoming rods per lot

None $422

100% $198

(2098,4) $197.97

%V
..... ..
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As we can see in the previous example, the all or none policy is not

- as good as an (n,c) plan for some 0 < n < N , especially when there is

sufficient uncertainty concerning p relative to k1 /k2 . We also see

that with uncertainty reduced, the optimal (n,c) plan tends to approach

either the all or the none policy.

.

--.

-I- °
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